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Abstract

This note examines the accuracy of methods that approximate AR(1) processes with discreteMarkov chains. Tauchen and Hussey's [Tauchen, G.,
Hussey, R., 1991. Quadrature-based methods for obtaining approximate solutions to nonlinear asset pricing models. Econometrica 59, 371–396]
method has problems under high autocorrelation. I suggest an alternative weighting function, and note that Tauchen's [Tauchen, G., 1986. Finite state
Markov-chain approximations to univariate and vector autoregressions. Economics Letters 20, 177–181] method is relatively robust.
© 2007 Elsevier B.V. All rights reserved.
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1. The problem

This note considers the accuracy of different methods that
are commonly used to approximate autoregressive processes by
Markov chains. We thus want to approximate the AR(1) process

ztþ1 ¼ 1� qð Þlþ qzt þ etþ1

by an n-node Markov chain {Z,Π} where Z={z1,z2,…, zn} and
Π={πi,j} where πi,j is the transition probability from zi to z j.
Here ɛ∼N (0,σɛ

2), and consequently the unconditional standard
deviation of z is σz=σɛ (1−ρ2)−1/2.

Five alternative methods are here used to approximate this
AR(1) process. The first method follows Tauchen (1986).
The nodes Z are then equally spaced between ±1.2σzln n,
and the transition probabilities Π are the probabilities πi,j=Pr
(z′∈ [z j− s,z j+ s]|z= zi) implied by the AR(1) process. The step
size s is half the distance between nodes, i.e. s=(z2− z1) / 2,

except at the extreme nodes where the intervals are (−∞,z1 + s]
and [zn− s,∞).

The following three methods all build on Tauchen and
Hussey's (1991). The nodes {zi} are then the Gaussian nodes
for some normal distribution N (μ,σ̂2), and the difference
between the approximation methods I use is the choice of σ̂2.1

To summarize Tauchen and Hussey's method, let {zi} and
{wi} denote the Gaussian quadrature nodes and weights for the
normal distribution N (μ,σ̂2). Suppose now that zt=μ and that
σɛ

2 = σ̂2. Then these Gaussian nodes and weights typically
provide an excellent approximation of how z will develop in the
next period. The problem is that if zt≠μ, Gaussian quadrature
would imply other nodes (and weights), but the Markov chain
requires that the nodes are fixed. So, can we find nodes Z and
probabilitiesΠ that provide an approximation to the process for
any zt∈Z? Gaussian quadrature provides nodes {zi} and
weights {wi} so thatR
g nð Þf nð ÞdncP

g zið Þwi
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where g is some function, ξ∼N (μ,σ̂2), and f is the density
function for ξ. Tauchen and Hussey (1991) note that if

ztþ1 ¼ 1� qð Þlþ qzt þ ntþ1

then
Z

g ztþ1ð Þf ztþ1jztð Þdztþ1

¼
Z

g ztþ1ð Þ f ztþ1jztð Þ
f ztþ1jzt ¼ lð Þ f ztþ1jzt ¼ lð Þdztþ1;

i.e.
Z

g ztþ1ð Þ f ztþ1jztð Þdztþ1c
X

g zi
� � f ztþ1jztð Þ

f ztþ1jzt ¼ lð Þw
i:

They therefore propose that the AR(1) process should
be approximated by the nodes {zi} and the transition
probabilities

pi;j ¼ f z jjz ið Þ
f z jjzt ¼ lð Þw

i:

As already mentioned, I consider three variants of the
Tauchen–Hussey method. First, as suggested by Tauchen and
Hussey (1991) I use σ̂2 =σɛ

2. Most subsequent implementa-
tions of the Tauchen and Hussey method (e.g. Burnside, 1999)
use this alternative, and Tauchen and Hussey (their Section 3.3)
argue that numerical evaluations support this choice.

The second variant I consider is σ̂=σz. Tauchen and Hussey
(1991) also mention this as a possible choice, and Klein (2007)
suggests this specification. The third variant I consider is
σ̂=wσɛ+(1−w)σzwhere w=1 /2+ρ / 4. The variance σ̂2 is then
set to a weighted average of the conditional and unconditional

variances, and more weight is given to the conditional variance
when the process is highly persistent.

Finally, the fifth method considered is outlined in Adda and
Cooper (2003). This method first chooses n intervals such that z
has equal unconditional probability to fall in each of the
intervals. Second, one node is chosen for each interval, and this
node is set to the expected value of z conditional on z being in
that interval. Third, the transition probabilities are calculated as
with Tauchen's (1986) method.

Using these five approximation methods, I consider the
accuracy of approximations to different specifications of the
AR(1) process

ztþ1 ¼ qzt þ etþ1:

The Markov-chain approximations are often used in
economics to model income processes, and I first consider
the accuracy of approximations to three processes that have
often been adopted in the literature. The first specification
follows Aiyagari (1994) and sets ρ=0.60 and σɛ

2 =0.013,
while the second follows Hubbard et al. (1995, HSZ) and sets
ρ=0.95 and σɛ

2 =0.030. The final specification, suggested by
Storesletten et al. (2000), is even more persistent and sets
ρ=0.98 and σɛ

2 =0.020. In addition to examining these
processes, I also examine the methods' accuracy for a broader
set of autocorrelations.

2. Results

Table 1 reports the autocorrelation, conditional standard
deviation, and unconditional standard deviation implied by the
Markov chains that are obtained with the different approximation
methods with n=5, 9, and 15 nodes, and Table 2 reports the

Table 1
Approximated AR(1) processes

True n=5 n=9 n=15

Tauch. Tauchen–Hussey A–C Tauch. Tauchen–Hussey A–C Tauch. Tauchen–Hussey A–C

σɛ σz w σɛ σz w σɛ σz w

Aiyagari’s process, ρ=0.60, σɛ
2=0.013

ρ 0.6000 0.5844 0.5992 0.6024 0.6000 0.5682 0.5982 0.6000 0.6000 0.6000 0.5938 0.5998 0.6000 0.6000 0.6000 0.5996
σɛ 0.1140 0.1167 0.1137 0.1138 0.1139 0.1127 0.1165 0.1140 0.1140 0.1140 0.1136 0.1155 0.1140 0.1140 0.1140 0.1139
σz 0.1425 0.1430 0.1418 0.1425 0.1424 0.1350 0.1451 0.1425 0.1425 0.1425 0.1391 0.1443 0.1425 0.1425 0.1425 0.1408
zn /σz 1.9313 2.2856 2.8570 2.4856 1.3998 2.6367 1.4091 4.5127 3.9261 1.7046 3.2497 5.0912 6.3639 5.5366 1.9396

Hubbard, Skinner and Zeldes’ process, ρ=0.95, σɛ
2=0.030

ρ 0.9500 0.9577 0.9073 0.9998 0.9524 0.9563 0.9503 0.9394 0.9945 0.9496 0.9559 0.9499 0.9477 0.9759 0.9500 0.9532
σɛ 0.1732 0.1843 0.1576 0.0101 0.1410 0.2221 0.1982 0.1670 0.0561 0.1692 0.1989 0.1883 0.1712 0.1198 0.1730 0.1874
σz 0.5547 0.6037 0.3275 0.5622 0.4792 0.5253 0.6205 0.4303 0.5556 0.5407 0.5415 0.5995 0.5043 0.5536 0.5536 0.5480
zn /σz 1.9313 0.8921 2.8570 1.4079 1.3998 2.6367 1.4091 4.5127 2.2238 1.7046 3.2497 1.9871 6.3639 3.1361 1.9396

Storesletten, Telmer and Yaron’s process, ρ=0.98, σɛ
2=0.020

ρ 0.9800 0.9952 0.9261 1.0000 0.9895 0.9989 0.9861 0.9619 1.0000 0.9815 0.9837 0.9810 0.9733 0.9998 0.9800 0.9823
σɛ 0.1414 0.0838 0.1258 0.0000 0.0679 1.5788 0.1466 0.1332 0.0014 0.1177 0.1873 0.1634 0.1371 0.0142 0.1381 0.1672
σz 0.7107 0.7938 0.2782 0.7261 0.5468 0.9471 0.8448 0.3868 0.7173 0.6657 0.6938 0.8306 0.4924 0.7131 0.7041 0.7020
zn /σz 1.9313 0.5685 2.8570 1.1521 1.3998 2.6367 0.8980 4.5127 1.8198 1.7046 3.2497 1.2664 6.3639 2.5663 1.9396

Note: ‘Tauch.’ is Tauchen's (1986) method and ‘A–C’ is Adda and Cooper's (2003) method. The first Tauchen–Hussey column uses the conditional variance and hence
sets σ̂=σɛ, the second column uses the unconditional variance and sets σ̂=σz and the final column uses a weighted average of σe and σz as described in the text.
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accuracy of approximations for a broader set of autocorrelation
parameters for n=5 and 9 nodes.2 The tables first show that
processes with relatively low persistence (for example Aiyagari's
process with ρ=0.60) are well approximated with all methods
even with a small number of nodes. For these process, we
however see that Tauchen and Hussey's quadrature based
methods consistently deliver better approximations than Tau-
chen's and Adda and Cooper's methods. The approximations are
less precise when persistence is high. Tauchen's method appears
to be relatively robust and never completely fails to capture any of
the three moments.

The standard Tauchen–Hussey implementation based on the
conditional variance provides a decent approximation of the
autocorrelation and the conditional variance. But with high
persistence, the unconditional variance is much larger than the
conditional, and this method chooses nodes that are close to the
mean of the process. Consequently, as demonstrated in Table 1,
the method generates an unconditional variance that is much
lower than the true unconditional variance. This result is not
surprising when one considers that the method was designed to
generate an accurate approximation of the conditional develop-
ment of z (starting from the unconditional mean of the process).
When persistence is high, the unconditional distribution is very
different from the conditional, and the resulting approximations
are imprecise.

The Tauchen–Hussey method based on the unconditional
variance has the opposite problem; it chooses nodes far from the
mean of the process, and with a small number of nodes the
implied transition probabilities from one node to another are

miniscule. As expected, the resulting approximation is rela-
tively accurate for the unconditional variance, but typically at
the price of a much too high autocorrelation and a too low
conditional variance.

The third implementation of the Tauchen–Husseymethod is a
compromise between the other two and aims at delivering more
robust approximations when the autocorrelation is high. I have
experimented with different weighting schemes before choosing
w=1 /2+ρ / 4. These weights deliver approximations that are
relatively accurate and robust, except when the autocorrelation is
very high and only a small number of nodes are used.

Adda and Cooper's method is also relatively robust at high
persistence levels, and in particular it then generates good
approximations of the autocorrelation and the unconditional
variance. The approximation to the conditional variance is less
precise. An advantage with this method is that the ergodic
distribution is uniform over the grid in contrast to the other
methods that tend to put more of the ergodic distribution at the
center of the process. This uniformity facilitates Monte Carlo
simulations, in particular when behavior in the extreme nodes is
important (for example if wealth is concentrated among a small
fraction of the population, and equilibrium prices are deter-
mined by the aggregate wealth holdings).

The different implications of thesemethods are exemplified by
Figs. 1 and 2 for the HSZ process (ρ=0.95, σɛ

2=0.030) when
using n=15 nodes.3 Fig. 1 shows the implied autocorrelation
ρ conditional on the node. As expected, the figure clearly shows

3 The implications of Adda and Cooper's method are not reported in the
graphs.2 Computer code is available at www.hhs.se/personal/floden.

Table 2
Accuracy of approximations

ρ Tauchen Tauchen–Hussey, σɛ Tauchen–Hussey, σz Tauchen–Hussey, w Adda–Cooper

ρ̂/ρ σ̂ɛ/σɛ σ̂z/σz ρ̂/ρ σ̂ɛ/σɛ σ̂z/σz ρ̂/ρ σ̂ɛ/σɛ σ̂z/σz ρ̂/ρ σ̂ɛ/σɛ σ̂z/σz ρ̂/ρ σ̂ɛ/σɛ σ̂z/σz

n=5
0.50 0.9686 1.0139 1.0012 0.9997 0.9994 0.9990 1.0007 0.9998 0.9999 1.0000 0.9999 0.9999 0.9310 0.9737 0.9471
0.60 0.9739 1.0234 1.0035 0.9986 0.9972 0.9950 1.0039 0.9977 0.9996 0.9999 0.9993 0.9993 0.9471 0.9888 0.9471
0.70 0.9798 1.0392 1.0085 0.9953 0.9905 0.9793 1.0174 0.9819 0.9982 0.9997 0.9969 0.9963 0.9665 1.0112 0.9471
0.80 0.9857 1.0692 1.0206 0.9869 0.9736 0.9272 1.0573 0.8828 0.9948 0.9990 0.9869 0.9840 0.9881 1.0494 0.9471
0.90 0.9944 1.1260 1.0543 0.9689 0.9379 0.7701 1.0911 0.4217 1.0008 0.9986 0.9379 0.9347 1.0060 1.1403 0.9471
0.92 0.9984 1.1287 1.0662 0.9638 0.9276 0.7116 1.0807 0.2644 1.0054 0.9993 0.9086 0.9131 1.0076 1.1793 0.9471
0.94 1.0044 1.1029 1.0804 0.9581 0.9162 0.6365 1.0629 0.1159 1.0107 1.0010 0.8568 0.8833 1.0076 1.2386 0.9471
0.96 1.0119 0.9902 1.0970 0.9518 0.9036 0.5366 1.0416 0.0206 1.0162 1.0046 0.7506 0.8402 1.0050 1.3425 0.9471
0.98 1.0155 0.5925 1.1170 0.9450 0.8898 0.3915 1.0204 0.0001 1.0217 1.0097 0.4804 0.7694 0.9989 1.5788 0.9471

n=9
0.50 0.9961 1.0174 1.0151 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9790 0.9892 0.9762
0.60 0.9971 1.0216 1.0179 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9896 0.9966 0.9762
0.70 0.9979 1.0287 1.0228 1.0000 0.9998 0.9996 1.0003 0.9998 1.0000 1.0000 1.0000 1.0000 1.0004 1.0078 0.9762
0.80 0.9985 1.0431 1.0333 0.9995 0.9981 0.9935 1.0043 0.9922 0.9994 1.0000 0.9999 0.9997 1.0086 1.0270 0.9762
0.90 0.9990 1.0849 1.0652 0.9956 0.9852 0.9275 1.0374 0.8150 0.9965 0.9998 0.9969 0.9943 1.0092 1.0733 0.9762
0.92 0.9992 1.1041 1.0804 0.9936 0.9786 0.8859 1.0471 0.6745 0.9970 0.9997 0.9937 0.9897 1.0082 1.0935 0.9762
0.94 0.9997 1.1303 1.1032 0.9907 0.9696 0.8211 1.0501 0.4578 0.9995 0.9996 0.9857 0.9813 1.0069 1.1248 0.9762
0.96 1.0015 1.1517 1.1378 0.9867 0.9575 0.7183 1.0401 0.1867 1.0041 0.9997 0.9600 0.9660 1.0055 1.1817 0.9762
0.98 1.0062 1.0368 1.1888 0.9816 0.9417 0.5442 1.0204 0.0096 1.0093 1.0015 0.8322 0.9367 1.0037 1.3244 0.9762

Note: The table shows moments implied by the respective Markov chains (ρ̂, σ̂ɛ, and σ̂z) relative to the true moments implied by the AR(1) process, (ρ, σɛ, and σz). See
also Table 1.
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Fig. 1. Approximation of the HSZ process with 15 nodes, true ρ (red, unmarked) and ρ conditional on node (blue, marked). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Approximation of the HSZ process with 15 nodes, true σɛ (red, unmarked) and σɛ conditional on node (blue, marked). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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that all approximations have problems approximating the true
autocorrelation at the extreme nodes where the process only can
move in one direction. Fig. 2 shows the implied standard
deviations σɛ conditional on the node and illustrates a main
difference between the Tauchen (1986) and the Tauchen and
Hussey (1991) methods; the former method generates approx-
imations that are good on average while the latter method
generates good approximations when the process is close to its
mean. The figures also demonstrate that the Tauchen–Hussey
implementation based on the unconditional variance generates a
much wider grid than the other methods. The transition
probabilities between nodes are then extremely low and as we
have already seen, the implied persistence is too high and the
implied conditional variance is too low.

3. Conclusions

This note has compared the accuracy of methods that are
often used to approximate AR(1) processes with discrete
Markov chains. The nodes generated by Tauchen and Hussey's
(1991) method are the Gaussian quadrature nodes that provide a
good approximation of the dynamics of the process conditional
on some current state of the process. When the process has high
persistence, the conditional transition dynamics will differ
substantially depending on the current state, and the most
common implementation of the Tauchen–Hussey method has
problems generating accurate approximations. In particular it
generates a too narrow grid and cannot approximate the

unconditional variance in the autoregressive process. I suggest
using another weighting function that generates a broader grid
with the Tauchen–Hussey method, but I also note that the
Tauchen (1986) method is relatively robust to high persistence.
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